
Airo International Research Journal

Volume XVI, ISSN: 2320-3714

April, 2018

Impact Factor 0.75 to 3.19 UGC Approval Number 63012

636

STUDY AND ANALYSIS IN DIJKSTRA’S ALGORITHM AND BELLMAN FORD

ALGORITHM ON RUN-TIME BASIS & IMPLEMENTATION IN ANGIOGRAPHY

SYSTEM

Name: Albia Maqbool

Name: Dr. Manoj Kumar
2

Affilation Shri Venkateshwara Affilation: Shri Venkateshwara

University, Gajraula, Amroha, (UP) University, Gajraula, Amroha, (UP)

ABSTRACT

Many applications like transportation and communication network system or any type of network use

shortest path algorithm for which we can find out the shortest path between two nodes. In the Single

source shortest path algorithm, a shortest path is calculating from one node to another node. In this

paper, I have analysis and compared the results of the shortest path algorithms (Dijkstra, Bellman

Ford) on the basis of running time, whose running time is minimum that algorithm will be best

algorithm for shortest route. I am using C# programming language as a source code to compare

among the algorithms. I have also compared the algorithms on the running basis of time complexity

and space. I have tried to give some advantages and disadvantages of both the algorithms also, after

find out best algorithm we can implement it in the angiography system which helps in human life

also.

KEYWORDS: Dijkstra’s Algorithm, Bellman Ford Algorithm, Floyd’s algorithm, Shortest Path,

Angiography System.

INTRODUCTION

Here we consider that a shortest path

algorithm problem by which we find out the

shortest path between two nodes. There are so

many shortest path algorithms depending on

the source and destination

Types of shortest path algorithm:

a. Single source Shortest Path Algorithm

b. Single destination Shortest

Path

c. Algorithm

d. All pair Shortest path Algorithm

SHORTEST PATH ALGORITHM

In Single source shortest path algorithm, we

have to find out the shortest path from a source

vertex to another vertex. In single destination

shortest path algorithm, we have to find out the

shortest path from all vertices to a single

destination vertex. In All pair shortest path

algorithm, we have to find out the shortest path

from all vertices to another vertex. Due to the

nature of routing applications, we need flexible

and efficient shortest path procedures, both

from a processing time point of view and also

in terms of the memory requirements. In this

Types Of Shortest
Path Algorithms

Single source
Shortest Path

Algorithm

Single destination
Shortest Path

Algorithm

All pair Shortest path
Algorithm

Airo International Research Journal

Volume XVI, ISSN: 2320-3714

April, 2018

Impact Factor 0.75 to 3.19 UGC Approval Number 63012

637

paper, I am comparing single source shortest

path algorithms (Dijkstra’s and Bellman

Ford)[1].

Here as we mentioned earlier, a graph can be

used to represent a map where the cities are

represented by vertices and the routes or roads

are represented by edges within the graph. In

this section, a graph representation of a map is

explained further, and brief descriptions and

implementations of the shortest path

algorithms being studied are presented.

2. DIJKSTA’S AND BELLMAN FORD

ALGORITHM

The working of djkstra’s algorithm and

bellman ford algorithm is as follows:

1) Dijkstra’s Algorithm-: The algorithm

stores all nodes in a priority queue ordered by

distance of the node from the root – in the first

iteration of the algorithm, only root has

distance set to 0, distance of all other nodes is

equal to infinity. Than in each step

Dijkstra's algorithm picks from the queue a

node with the highest priority (least distance

from the root) a processes it and reevaluates

distances of all unprocessed descendants of the

node. This means that the algorithm checks for

all descendants that the following condition

holds:

distance +edgeweight<distance

Run time complexity of Dijkstra's

algorithm.

Here we find out complexity of Dijkstra’s

algorithm, for this we have to executes loops

every time the main loop, one vertex is

extracted from the queue. We assuming that

there are V vertices in the graph, the queue

may contain O(V) vertices. Each pop operation

takes O(log V) time assuming the heap

implementation of priority queues. So the total

time required to execute the main loop itself is

O(V log V). In addition, we must consider the

time spent in the function expand, which

applies the function handle_edge to each

outgoing edge. Because expand is only called

once per vertex, handle_edge is only called

once per edge. It might call push(v'), but there

can be at most V such calls during the entire

execution, so the total cost of that case arm is

at most O(V log V). The other case arm may be

called O(E) times, however, and each call to

increase priority takes O(lgV) time with the

heap implementation.

Therefore the total run time is O(V log V + E

log V), which is O(E log V) because V is O(E)

assuming a connected graph.

2) Bellman Ford Algorithm-:The Bellman-

Ford algorithm is based on the relaxation

operation. The relaxation procedure takes two

nodes as arguments and an edge connecting

these nodes. If the distance from the source to

the first node plus the edge length is less than

distance to the second node, than the first node

is denoted as the predecessor of the second

node and the distance to the second node is

recalculated [(distance(A)+ edge.length].

Otherwise no changes are applied.

Airo International Research Journal

Volume XVI, ISSN: 2320-3714

April, 2018

Impact Factor 0.75 to 3.19 UGC Approval Number 63012

638

BELLMAN-FORD(G,w,s)

1. INITIALIZE-SINGLE-SOURCE(G,s)

2. for i = 1 to |G.V|-1

3. for each edge (u,v) G.E

4. RELAX(u,v,w)

5. for each edge (u,v) G.E

6. if v.d>u.d + w(u,v)

7. return FALSE

8. return TRUE

INITIALIZE-SINGLE-SOURCE(G,s)

 G.V

3. v.pi = NIL

4. s.d = 0

RELAX(u,v,w)

1. if v.d>u.d + w(u,v)

2. v.d = u.d + w(u,v)

3. v.pi = u

Basically the algorithm works as follows:

1. Initialize d's, π's, and set s.d = 0

 O(V)

2. Loop |V|-1 times through all

edges checking the relaxation

condition to compute minimum

distances (|V|-1) O(E) =

O(VE)

3. Loop through all edges checking

for negative weight cycles which

occurs if any of the relaxation

conditions fail O(E)

The run time of the Bellman-Ford

algorithm is O(V + VE + E) = O(VE).

Note that if the graph is a DAG (and thus

is known to not have any cycles), we can

Airo International Research Journal

Volume XVI, ISSN: 2320-3714

April, 2018

Impact Factor 0.75 to 3.19 UGC Approval Number 63012

639

make Bellman-Ford more efficient by

first topologically sorting G (O(V+E)),

performing the same initialization

(O(V)), and then simply looping through

each vertex u in topological order

relaxing only the edges in Adj[u] (O(E)).

This method only takes O(V + E) time.

This procedure (with a few slight

modifications) is useful for finding

critical paths for PERT charts.

COMPARISON ON THE BASIS OF

COMPLEXITY AND SPACE

We consider a graph[G] with the vertices or

nodes [V] and the edges[E].Now If we

find the complexity of Dijkstra Algorithm

with the Bellman Ford i.e.

Algorithm

Time Complexity

Space Complexity

Dijkstra’s

Algorithm

O(E+V(log V)) O(V)

Bellman Ford O(EV) O(V)

(i). Advantages and Disadvantages:

a) Dijkstra’s Algorithm- The advantages and

disadvantages are as follows:

1. It is a Greedy Algorithm.

2. It doesn’t work on negative weight.

3. It can work for directed and

undirected graph only.

4. It requires global information.

b) Bellman Ford Algorithm- The

advantages and disadvantages are as follows:

1. It is a dynamic Algorithm.

2. It can work on negative weight.

3. It can only work for directed graph.

4. It only requires local

information.

6. COMPARISON USING C# CODE

Now, I will determine the efficiency of

shortest path algorithm. I have created a

window based application to find out the

running time of both the algorithms. I have

created a WindowFormsApplication1, in

which I have created a Form and add a list

box to display the running time of Dijkstra’s

and bellman ford algorithm. I have

implemented Dijkstra’s algorithm and

Bellman Ford algorithm using C# code. I have

created two functions for Dijkstra’s and

Bellman Ford algorithms. From the

Form_Load () method, both functions are

called and display the shortest path for every

node from a single source. And I have used

stopwatch to calculate the running time of

Dijkstra’s algorithm and Bellman Ford

algorithm in microseconds. I used Random

numbers to generate a graph. A. To strore a

Graph : public struct Edge

{

publicint u, v, w;

};

Airo International Research Journal

Volume XVI, ISSN: 2320-3714

April, 2018

Impact Factor 0.75 to 3.19 UGC Approval Number 63012

640

int NODES ; /* the number of nodes */ int

EDGES; /* the number of edges */

int[]d=new int [10000]; /* d[i] is the

minimum distance from source node s to

node i */

Double [,] G = new double [1000, 1000];

/* graph to store the graph adjacency matrix */

B. To store the adjacency matrix of graph using

Random numbers:

Random rn1 = new Random ();

for (m = 0; m length; m++)

{

For (n = 0; n < length; n++)

{

W [m, n] = rn1.Next (0, 10000);

G [m, n] = w [m, n];

}

}

C. To Store the Edges with their weight:

k = 0;

For (i = 0; i< NODES; ++i)

{

For (j = 0; j < NODES; ++j)

{

If (w [i, j]!= 0)

{Edges[k].u = i; edges[k].v = j; edges[k].w =

w [i, j]; k++;

}

1++;

}

}

EDGES = k;

D. To Find out the running time using

stopwatch:

Stopwatch s = new Stopwatch ();

s.Start();

BellmanFord(source_

vertex); /* Call for

Bellman Ford

Algorithm */ s.Stop();

Long time = s.ElapsedTicks /

Stopwatch.Frequency / (1000L *1000L));

listBox1.Items.Add ("time

taken by Bellman ford is"+

time+ microseconds");

s.Start();

Dijkstra(source_ver

tex); /* Call for

Dijkstra’s

Algorithm */

s.Stop();

Long time = s.ElapsedTicks

/Stopwatch.Frequency / (1000L *1000L));

listBox1.Items.Add ("time taken by

Dijkstra’s algorithm is"+

time+"microseconds");

First Run

Airo International Research Journal

Volume XVI, ISSN: 2320-3714

April, 2018

Impact Factor 0.75 to 3.19 UGC Approval Number 63012

641

 N

Dijkstra’s

Algorithm

Bellman Ford

Algorithm

5 1570 751

10 1617 764

50 1853 4655

100 2777 32026

500 23923 4205010

1000 92550 33416105

 Second Run

N Dijkstra’s Algorithm Bellman Ford Algorithm

5 1469 667

10 3570 687

50 1918 9631

100 2921 32822

500 23794 4224362

1000 96896 33603891

 Third Run

N Dijkstra’s Algorithm Bellman Ford Algorithm

5 1667 667

10 1455 697

50 1758 4557

100 2644 37841

500 25087 4158252

1000 92649 33594017

 Fourth Run

N Dijkstra’s Bellman Ford

5 1560 688

10 1411 678

50 1748 4476

100 2566 31904

500 24285 4196981

1000 92477 34341142

 Fifth Run

5 1606 770

10 1495 728

50 1659 4486

100 3479 31950

500 24423 4147861

1000 126832 33644137

 Average

5 1523.8 694.6

10 1919.6 719.8

50 1797.2 5571

100 2867.4 33538.6

500 24292.4 4186523.2

1000 100178.8 33719028.6

Airo International Research Journal

Volume XVI, ISSN: 2320-3714

April, 2018

Impact Factor 0.75 to 3.19 UGC Approval Number 63012

642

We can observe from this table that for the

small number of vertices (N=5, 10) Bellman

Ford is taking less time in comparison with

Dijkstra’s algorithm. And for the large number

of vertices (N=50, 100, 500, 1000) Dijkstra’s

is taking less time in comparison with Bellman

Ford.

RESULT ANALYSIS (DIJKSTRA’S AND

BELLMAN FORD ON AVG. RUNNING

TIME BASIS)

In this study we have studied about two

single source shortest path algorithms

and their comparison. There is advantage

and disadvantage in algorithms. To find

the running time of each algorithm I

used one Program for comparing the

running time (in Microseconds). After

running the same program on five

different runs (for each different value of

N=5, 10, 50, 100, 500, 1000), I

calculated the average running time for

each algorithm and then showed the

result with the help of a chart. From the

chart I can conclude that for a small

number of nodes (N=5, 10) Bellman

Ford is the most efficient algorithm to

find out the shortest path.

Figure: 1 , Average Running Time For N=5, N=1

Figure-2, Average Running Time For N=50. For N=50, Dijkstra’s Algorithm is efficient

algorithm.

For N=100,again Dijkstra’s algorithm is

efficient algorithm, there is a very big

difference in running time of Bellman Ford

running time and Dijkstra’s algorithm.

0

2000

4000

6000

Dijkstra's Bellman Ford

1797.2

5571

N=50

N=50

0

500

1000

1500

2000

Dijkstra's Bellman Ford

1523.8

694.6

1919.6

719.8
N=5

N=10

Airo International Research Journal

Volume XVI, ISSN: 2320-3714

April, 2018

Impact Factor 0.75 to 3.19 UGC Approval Number 63012

643

N=100

Figure: 3, Average

Running Time For

N=100

For N=500, 1000, Dijkstra’s algorithm is efficient algorithm in comparison to Bellman Ford.

Figure: 4 , Average Running Time For

N=500.

By these all charts, we can conclude that

for small number of nodes (N < 50)

Bellman Ford perform better than

Dijkstra’s algorithm. Dijkstra’s

algorithm takes twice the running time

of Bellman Ford algorithm. But a large

number of nodes (N>50) Dijkstra’s

algorithm becomes more efficient. For

N=50, Bellman Ford algorithm is three

times to Dijkstra’s running time. For

N=100, Bellman Ford is 11 times to

Dijkstra’s algorithm.

0

2000000

4000000

6000000

Dijkstra's Bellman Ford

24292.4

4186523.2

N=500

N=5…

0

10000

20000

30000

40000

Dijkstra's Bellman Ford

2867.4

33538.6

N=100

Airo International Research Journal

Volume XVI, ISSN: 2320-3714

April, 2018

Impact Factor 0.75 to 3.19 UGC Approval Number 63012

644

Figure: 5 , Average Running Time For N=1000.

For N=500, 1000, Dijkstra’s algorithm

outperforms in comparison to Bellman Ford

algorithm

COMPARISONS AND EXPERIMENT

When using a naive implementation of

Dijkstra’s algorithm the time complexity is

quadratic, which is much better that the cubic

time complexity of the Bellman Ford

algorithm. However, Dijkstra’s algorithm

returns only a subset of Bellman Ford

algorithm. Specifically, it returns the shortest

path between a given vertex and all other

vertices while the Bellman Ford algorithm

returns the shortest path between all vertices. It

is interesting to note that if you run Dijkstra’s

algorithm n times, on n different vertices, you

will have a theoretical time complexity of

O(n* n2)=O(n3). In other words, if you use

Dijkstra’s algorithm to find a path from every

vertex to every other vertex you will have the

same efficiency and result as using Bellman

Ford algorithm.

In order to test the efficiency of these

algorithms I ran several test cases. I

implemented Dijkstra’s algorithm using a

priority queue and I ran each test case 1,000

times. All of the results are aggregations of

the 1,000 runs, which gives me a larger, more

manageable number. I ran six test cases, for

each algorithm, varying the number of vertices

in the graph. I used an automated method for

creating edge so the sparseness of each graph

is always the same.

In my implementation, the Bellman Ford

algorithm is actually faster when the number

of vertices is small. Only after the number of

vertices grows to more than ten does the

Dijkstra algorithm become faster. When

running Dijkstra’s algorithm n times (to get

all-pairs shortest-path) the time complexity

quickly grows greater that Bellman Ford

algorithm. Additional tests show that when

running

Dijkstra’s algorithm for more than a quarter of

the vertices the time complexity exceeds that

of Bellman Ford algorithm.

 The chart in figure 1 shows the total number

of seconds for various values of n (for 1,000

iterations of each algorithm). As the number

of vertices doubles from 80 to 160, the time

increases by a factor 8, which is cubic time

complexity. There is only a small increase in

0

10000000

20000000

30000000

40000000

Dijkstra's Bellman's Ford

100178.8

33719028.6

N=1000

N=1000

Airo International Research Journal

Volume XVI, ISSN: 2320-3714

April, 2018

Impact Factor 0.75 to 3.19 UGC Approval Number 63012

645

time complexity for Dijkstra’s algorithm over

the same values for n. In fact, the time for

Dijkstra’s algorithm increases by 2.3 as the

value of n doubles, which is a logarithmic time

complexity[2].

However, we must keep in mind that Bellman

Ford algorithm finds the shortest path between

all vertices, while Dijkstra’s algorithm finds

the shortest path from a single vertex to all

other vertices. Therefore, the comparison

between the two is not necessarily valid. If we

want to use

Dijkstra’s algorithm to find the shortest path

for all vertices we must run it n times – once

for each vertex.

The chart in figure 2 shows the total number of

seconds for the same values of n, but with

each iteration of Dijkstra’s algorithm being

repeated n times. The result is that Dijkstra’s

algorithm has also found the shortest path

between all vertices but we the time requires

increases by 6 when the value of n doubles.

RESULT ANALYSIS

Both Bellman Ford and Dijkstra’s algorithm

may be used for finding the shortest path

between vertices. The biggest difference is

that Bellman Ford algorithm finds the shortest

path between all vertices and Dijkstra’s

algorithm finds the shortest path between a

single vertex and all other vertices. The space

overhead for Dijkstra’s algorithm is

considerably more than that for Bellman

Ford algorithm. In addition,

Dijkstra’salgorithm is much easier to

implement.

 In most cases, for a small values number of

vertices, the savings of using Dijkstra’s

algorithm are negligible and probably not

worth the effort and overhead required.

However, when the number of vertices

increases the performance of Bellman Ford

algorithm drops quickly. Therefore, the use of

Dijkstra’s algorithm can provide a solution

when performance is a factor. On the other

hand, if you will need the shortest path

between several vertices on the same graph

when we want to consider Dijkstra’s

algorithm. In the test case, running the

algorithm for more than ¼ of the vertices

decreased performance below that of running

Bellman Ford algorithm.

CONCLUSION AND FUTURE WORK

On the basis of above the results performance

we analysis the results and also we compare

execution time of source code of Dijkstra’s

Algorithm and Bellman Ford Algorithm on

run-time basis then we found conclusion that

Dijkstra’s Algorithm is best Algorithm which

takes minimum time for execution code for

taking large numbers of nodes (See Figure-5 &

Table-1) for calculate the shortest path in any

network. We also suggest to all The scientist,

The Mathematician and students use of

Dijkstra’s Algorithm is best for solving

shortest route planning in any Networks. If

this algorithm is use as a implement it in a

angiography system (Medical department)

during check out of blockage of vein in human

heart then by which this implementation we

can save more human’s life.

REFERENCES

[1]. Swati vishnoi, HinaHasmi,3rd

International Conference on System

Modeling& Advancement in Research

Trends (SMART)

,TeerthankerMahaveer University ,

Moradabad ,2014.

[2]. http://rebustechnologies.com/shortest-

path-algorithm-comparison/―Shortest

http://rebustechnologies.com/shortest-path-algorithm-comparison/
http://rebustechnologies.com/shortest-path-algorithm-comparison/
http://rebustechnologies.com/shortest-path-algorithm-comparison/
http://rebustechnologies.com/shortest-path-algorithm-comparison/
http://rebustechnologies.com/shortest-path-algorithm-comparison/
http://rebustechnologies.com/shortest-path-algorithm-comparison/
http://rebustechnologies.com/shortest-path-algorithm-comparison/
http://rebustechnologies.com/shortest-path-algorithm-comparison/
http://rebustechnologies.com/shortest-path-algorithm-comparison/
http://rebustechnologies.com/shortest-path-algorithm-comparison/
http://rebustechnologies.com/shortest-path-algorithm-comparison/
http://rebustechnologies.com/shortest-path-algorithm-comparison/

Airo International Research Journal

Volume XVI, ISSN: 2320-3714

April, 2018

Impact Factor 0.75 to 3.19 UGC Approval Number 63012

646

Path Algorithm Comparison Posted

onDecember 5, 2011Bydchamber‖.

[3]. http://en.algoritmy.net/article/45514/D

ijkstras-algorithm

[4]. http://en.algoritmy.net/article/47389/B

ellman-Ford-algorithm

[5]. 9th DIMACS Implementation

Challenge. Shortest Paths.

http://www.dis.uniroma1.it/~challenge

9/, 2006.

[6]. R. K. Ahuja, K. Mehlhorn, J. B. Orlin,

and R. E. Tarjan. Faster algo- rithms

for the shortest path problem. Journal

of the ACM, 37(2):213– 223, 1990.

[7]. H. Bast, S. Funke, and D. Matijevic.

TRANSIT—ultrafast shortest- path

queries with lineartimepreprocessing.

In 9th DIMACS Imple- mentation

Challenge [1], 2006.

[8]. H. Bast, S. Funke, D. Matijevic, P.

Sanders, and D. Schultes. In transit to

constant time shortestpath queries in

road networks. In Workshop on

Algorithm Engineering and

Experiments (ALENEX), pages 46–

59, 2007.

[9]. H. Bast, S. Funke, P. Sanders, and D.

Schultes. Fast routing in road

networks with transit nodes. Science,

316(5824):566, 2007.

[10]. Praveen Kumar, Surender

Singh, International Journal of

Software Computing and Testing

eISSN: 2456-2351 Vol. 3: Issue 1.

http://rebustechnologies.com/shortest-path-algorithm-comparison/
http://rebustechnologies.com/shortest-path-algorithm-comparison/
http://rebustechnologies.com/shortest-path-algorithm-comparison/
http://rebustechnologies.com/author/dchamber/
http://rebustechnologies.com/author/dchamber/
http://en.algoritmy.net/article/45514/Dijkstras-algorithm
http://en.algoritmy.net/article/45514/Dijkstras-algorithm
http://en.algoritmy.net/article/45514/Dijkstras-algorithm
http://en.algoritmy.net/article/45514/Dijkstras-algorithm
http://en.algoritmy.net/article/45514/Dijkstras-algorithm
http://en.algoritmy.net/article/45514/Dijkstras-algorithm
http://en.algoritmy.net/article/45514/Dijkstras-algorithm
http://en.algoritmy.net/article/47389/Bellman-Ford-algorithm
http://en.algoritmy.net/article/47389/Bellman-Ford-algorithm
http://en.algoritmy.net/article/47389/Bellman-Ford-algorithm
http://en.algoritmy.net/article/47389/Bellman-Ford-algorithm
http://en.algoritmy.net/article/47389/Bellman-Ford-algorithm
http://en.algoritmy.net/article/47389/Bellman-Ford-algorithm
http://en.algoritmy.net/article/47389/Bellman-Ford-algorithm
http://en.algoritmy.net/article/47389/Bellman-Ford-algorithm
http://en.algoritmy.net/article/47389/Bellman-Ford-algorithm
http://en.algoritmy.net/article/47389/Bellman-Ford-algorithm
http://www.dis.uniroma1.it/~challenge9/
http://www.dis.uniroma1.it/~challenge9/
http://www.dis.uniroma1.it/~challenge9/

